


IV JORNADA de EXPERIENCIAS INNOVADORAS en EDUCACIÓN en la FCEIA

IV EIEF 2015

28 de Octubre de 2015

UNA INTRODUCCIÓN TEMPRANA DE LA ENSEÑANZA DE LA FEM EN ELECTROSTÁTICA (TIDCyT).

PRESENTACIÓN TRADICIONAL: 3 SITUACIONES, 3 TIPOS DE FEM

¿QUÉ ENTENDEMOS POR FEM?

Entendemos por fem el "trabajo por unidad de carga" realizado por agentes no conservativos, externos al sistema (electromagnéticos, químicos, electrocinéticos, etc.) y que implica un ingreso o egreso de energía al sistema.

> Esto la distingue de la diferencia de potencial que está relacionada a campos conservativos.

PRESENTACIÓN UNIFICADA DE FEM

Proponemos reemplazar la fragmentación tradicional fem de circuitos. fem inducida (Faraday)

fem de movimiento

por una única presentación que incorpore, además, los fenómenos electrostáticos

NUESTRA PROPUESTA: PRESENTACIÓN DE FEM EN ELECTROSTÁTICA

Una introducción temprana de la fem en electrostática, asociada a nociones mecánicas, podría colaborar en:

- establecer un puente entre representaciones concretas y conocidas de la mecánica y conceptos más abstractos del electromagnetismo
- introducir la fem como trabajo por unidad de carga de fuerzas no conservativas
- distinguir fem de diferencia de potencial mostrando que son conceptos distintos pero relacionados
- contribuir a la construcción de un concepto unificado de fem

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS EN ELECTROSTÁTICA

Cuando se analiza el movimiento de una carga en un campo eléctrico a velocidad constante, usualmente:

• se calcula el trabajo de la fuerza eléctrica (conservativa) a partir de la diferencia de energía potencial entre los puntos inicial y final

• se menciona que es necesaria la presencia de un agente externo que realiza un trabajo igual y opuesto

● no se discute el aporte de energía de este agente externo, es decir, su carácter no conservativo

● no se vincula el trabaio de las fuerzas *no conservativas* ejercidas por este agente con la fem

¿QUÉ ENTIENDEN LOS **ALUMNOS POR FUERZAS NO CONSERVATIVAS?**

Los alumnos:

• relacionan el concepto de fuerzas no conservativas con el trabajo no nulo en un camino cerrado y lo identifican con fuerzas de roce.

• reconocen que el trabajo de las fuerzas no conservativas es igual a la variación de la energía mecánica de un sistema de partículas.

pocos identifican conservación de la energía mecánica con un ingreso o egreso de energía al sistema.

ASPECTOS A ENFATIZAR EN NUESTRA PROPUESTA

Las situaciones problema se diseñaron enfatizando las siguientes cuestiones:

- La aparición de una fem obedece a acción de fuerzas no conservativas
- La fem modifica la energía del sistema
- Las fuerzas no conservativas actúan sobre las cargas eléctricas y se oponen a las fuerzas debidas a los campo electrostáticos presentes que son campos conservativos
- El trabajo estas fuerzas no conservativas es de opuesto al trabajo de la fuerza electrostática